

PUMA SMX series

Super Multi-tasking Turning Center

PUMA SMX series PUMA SMX2600 PUMA SMX3100 / L PUMA SMX2600S / ST PUMA SMX3100S / ST / LS

1.0

Basic information

Basic Structure

Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

PUMA SMX series

PUMA SMX series, Doosan's next generation Multi-tasking Turning Center, features high productivity, high precision and easy operation. By integrating the capabilities of multiple machines into one system, the PUMA SMX series provides best in class machining capability by using multi-tasking functions which minimize the machining time and the number of machining operations. The PUMA SMX series also provides excellent performance for high precision machining by minimizing thermal deformation and applying an accuracy control feature based on multiple thermal compensation functions. Ergonomic design considering operator convenience and efficient maintenance provides an optimal solution that meets the customer's needs.

Detailed Information 24 Diagrams Machine / CNC Specifications 35 **Customer Support Service** 42 PUMA SMX 2600ST 00

Higher Productivity through Powerful Multi-tasking Functions

Decreases the total processing time and number of machining operations by using a single setup. This provides excellent high speed performance for component manufacturing processes which require accurate and complex machining.

- Complex machining capabilities of left spindle, right spindle, B-axis , milling spindle and lower turret
- High-rigidity machine construction using structural analysis design
- Maximized Y-axis machining area through orthogonal design structure
- Maximize productivity through simultaneous machining

* This image contains several options.

Enhanced Precision through High Accuracy Control Functions

Maintains excellent precision during long-term machining processes by minimizing the thermal deformation of the spindle and the feed axis, and maximises precision through the 0.0001° axis resolution control function.

- Minimized thermal deformation of the spindle and feed axis using oil cooler
- Adoption of Roller LM Guideways with high-rigidity and high precision
- Equipped with 0.0001° B-axis and C-axis accuracy control function

Easy and Convenient Operation through an Ergonomic Design

Features excellent maintenance as well as usability and convenience through customized functions.

- Front located tool magazine
- Side-to-side movable swiveling operation panel with adjustable height
- Convenient ATC MAGAZINE operation panel

Contents

02 **Product Overview**

Basic information

- 04 Basic structure and cooling Concept
- 05 Main Units
- Machine Performance 10
- 16 CUFOS
- 21 Standard / Optional Specifications

Basic information

Basic Structure Main Units

Machine

Performance CUFOS

Basic Structure

Robust Design

FEM (Finite Element Method) analysis results in superior machine stability. All guideways are sealed with a protective covers, preventing high temperature chips and coolant from contacting the guideways, thus maintaining unsurpassed long-term accuracy.

Feed Axis

Extended axis travel distance and improved rapid traverse rate improve workpiece machining and provide excellent productivity. The X, Y and Z-axis move orthogonally to reflect high precision machine accuracy into machining accuracy.

	Travel			
Z-axis C1-axis Braxis		PUMA SMX2600/S, 3100/S	PUMA SMX3100L/LS	PUMA SMX 2600ST / 3100ST
	X-axis	630 mm (24.8 inch)		695 mm (27.4 inch)
	Y-axis	300 (±15	5.9) inch)	
	Z-axis	1585 mm (62.4 inch)	2585 mm (101.8 inch)	1585 mm (62.4 inch)
Z-axis Y-axis X2-axis	A-axis	1605 mm (63.2 inch)⁰ 1562 mm (61.5 inch) ^❷	2500 mm (98.4 inch) ⁰⁰	1538 mm (60.6 inch)⁰
Z2-axis	B-axis			
A-axis	X2-axis			235 mm (9.3 inch)
	Z2-axis		-	1540 mm (60.6 inch)
			Right spindle	2 Servo tail stock

High Precision Roller type LM Guideways

SP class roller type LM guideways for extra load capacity and rigidity are used on all axes to enable high rapid traverse rates.

• Right spindle (Servo tail stock is not applicable)

Highly Rigid Design. All units are located on the main frame vertically for high rigidity.

Detailed Information

Options Diagrams Specifications

Customer Support Service

PUMA SMX series

Basic Cooling Concept for Higher Accuracy in a Long time Machining

Structural preparation to minimize thermal error and ensure superior accuracy for a long time operation

Minimization of Thermal Deformation by Oil Cooling

Spindle and ball screw core cooling system minimizes thermal deformation during long machining processes and enhances high accuracy performance.

Cutting Accuracy

Feedrate

0.5 mm/rev (0.02 ipr)

By performing extended test procedures of individual machine elements and detailed analysis of results, the SMX series achieves a high level of precision and reliability that fulfills customer satisfaction.

Feedrate

Milling (X-Y plan	e) 90°
PUMA SMX2	600 180° 0°
3.2	μm ^{270°}
Material	Aluminium
Tool	End mill Ø20 mm (0.787 in.)

* This test is performed under Doosan Machine Tool's test environment.

2500 mm/min (98.4 ipm)

Basic information

Basic Structure Main Units

Machine

Detailed Information

Performance CUFOS

Spindle

Perfect combination of 3 key spindles to ensure machining stability under various cutting conditions.

Options Diagrams Specifications

Customer Support Service

Perfect combination of key- rotation axis

Both left and right spindle are capable of high accuracy C-axis control and perform various machining functions like turning, milling and synchronized cutting using single set-up with milling spindle.

* On S3 25% operation

Model	Spindle	Tool shank	Spindle speed (r/min)	Power kW (Hp)	Torque N∙m (ft-lbs)	Condition
PUMA SMX2600 series	Milling	CAPTO C6	12000	26 / 18.5 / 15	124 (01 5)*	2.5min / 10min / cont.
PUMA SMX3100 series	Spindle		12000	(34.9 / 24.8 / 20.1)	124 (91.3)	

PUMA SMX series

High Precision Control of Spindle axes (C & B-axis)

Machining operation is mainly done by Left and Milling spindle. C-axis of left spindle and B-axis of milling spindle with Y-axis control realize multi-tasking turning center that can drill, tap and end mill in any angle and also deliver the ability to cut precise angles and sculpted contours(5-axis simultaneous controlled specification is option).

precisely at a random angle.

screw

More easier and faster set-up of the tailstock using M-code program by servo motor and ball

Servo driven tailstock

Servo tailstock make part set-up faster and easier. The operator inputs the proper M-code information in the control and tailstocks move to its proper positions automatically by linear motion control of servo motor and ball screw. No manual adjustments are required.

Model	Tail stock travel	Max. quill thrust force	Tail stock
	mm (inch)	kN (lbs)	center
PUMA SMX2600 / 3100	1562 (61.5)	10 (2248.0)	Built-in type
PUMA SMX3100L	2500 (98.4)	15 (3374.4)	MT#5

Automatic Tool

Changer

Servo ATC and Servo

fast and reliable tool

tool magazine ensuring

ATC

indexing

Basic information

Basic Structure Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

Servo driven ATC & Tool magazine

The tool magazine can be increased up to 120 tools and tools are selected by a fixed address method that follows the shorter path.

*120Tools ATC option is only available to PUMA SMX2600ST/3100ST.

Max. tool length (from gauge line)	450 mm (17.7 inch)
Max. tool weight	12 kg (26.5 lb)
Max. tool moment	9.8 N·m (7.2 ft-lbs)
Max. tool diameter (continuous)	90 mm (3.5 inch)
Max. tool diameter (adjacent pots are empty)	130 mm (5.1inch)

ATC-MAGAZINE Operation Panel

The status of ATC and the tool magazine unit are identified visually by using a graphic touch panel display and touch operation. The touch screen also operates the ATC, the tool magazine and the tool feed pot carrier individually.

Display and touch operation Displays ATC – MAGAZINE related information and supports manual operation by touchscreen. 7.5inch large screen specification is available for the ATC – MAGAZINE operation panel.

The internal operation status of the ATC can be photographed by the camera and displayed on the screen .

Improves the tool management by saving and displaying useful tool related information.

Additional Tool Magazine

As option just for PUMA SMX3100L/LS, long boring bar magazine is available to ensure more easy application to long tube machining

- You can select tools storage capacity 2+1 tools instead of 3 tools. The 2+1 tools storage means 2 tools of Ø60 x L600 mm or Ø30 x L800 mm and 1 large diameter tools, Ø190 x L200 mm can be mounted in long boring bar magazine.
- Ø30 x L800 mm sized tool is not Long boring bar but Gun drill. We do not recommend long boring bar sized Ø30 x L800 mm.

	Max. Tool size Ø 60 x L 600 mm	Max. Weight
	(Ø 2.4 x L 23.6 inch) O ľ	(33.1 lb)
First.	Max. Tool size	Max. Weight
	Ø 30 x L 800 mm 2	15 ^{kg}
	(Ø 2.4 x L 31.5 inch)	(33.1 lb)

Turret

High rigid servo driven Lower turret (only on PUMA SMX2600ST / 3100ST)

Turret rotation, acceleration/deceleration and large diameter curvic coupling are controlled by a high-torque servo motor. Unclamp and rotation are virtually simultaneous. The fast index response keeps cycle times short.

Strong and rigid lower turret in multi-tasking is to provide more powerful manufacturing performance and a variety of new applications.

Number of Tool stations

12 ea

Tool holder type

BMT 65P

Max. Rotary Tool Speed 5000 r/min

Various applications of lower turret

Basic information

Basic Structure Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

Expands machining

orthogonal structure

and enables machining

of large size workpieces

through the extended

turning diameter.

capacity using an

Maximized Y-axis Mmachining Area Using Orthogonal Structure Design

Maximized Y-axis machining area because of orthogonal structure design allows the machining of a wide range of workpieces.

Y-axis : 300 mm (11.8 inch)

Extended Machining Area

The extended machining area allows machining of large diameter and long workpieces.

* PUMA SMX3100L/LS

Large Bar Working Diameter

Both SMX2600 and 3100 models provide large bar diameter capacity through the spindle drawtube.

Powerful machining capability in various operation such as turning, milling and drill and tapping and multitasking performance ensuring more higher machining efficiency.

Powerful Machining

O.D. cuttir	ıg (PUN	MA SMX	3100)																									
Spindle sp r/min	beed	Cutting m/mir	speed n (ipm)	Feedrate mm/rev (ipr)	Radial cutting depth mm (inch)		pth	Material removal rate cm ³ /min (inch ³ /min)																				
253		21 (826	10 57.7)	0.55 (0.022)		8.5 (0.3)		1405 (85.7)																				
U-drill (mi	lling)																											
ן mm	fool (inch)		Milling	r/min	mm	F eedrate 1/min (ip	edrate Material removal ra /min (ipm) cm³/min (inch³/mi																					
Ø63	3 (2.5)			1010	1	31 (5.2)		409 (25.0)																				
Face millir	ıg		*		·																							
Tool mm (inch)	ol Milling spindle speed inch) r/min		Radial cutti mm (ir	Radial cutting depth mm (inch)		drate in (ipm)	Material removal rate cm ³ /min (inch ³ /min)																					
Ø80 (3.1)		110	0	5 (0.	2)	1117 (44.0)		357 (21.8)																				
End millin	g																											
Tool mm (inch)	Milli	ng spin r/mi	dle speed n	Radial cutti mm (ir	ng depth nch)	Fee mm/m	drate in (ipm)	Material removal rate cm ³ /min (inch ³ /min)																				
Ø25 (1.0)		382	2	25 (1	.0)	200 (7.9)		200 (7.9)		200 (7.9)		200 (7.9)		200 (7.9)		200 (7.9)		200 (7.9)		200 (7.9)		200 (7.9)		200 (7.9)		200 (7.9)		125 (7.6)
Tapping																												
Tool Milling spindle speed mm (inch) r/min		d		Feedrate mm/min (ipm)																								
M30 x	P3.5 (N	M1.2 x P	0.1)	2	212			742 (29.2)																				

* The results, indicated in this catalogue are provides as example. They may not be obtained due to differences in cutting conditions and environmental conditions during measurement.

Higher Productivity by Multi-tasking performance

Faster machining time compared to many conventional machines provides superior productivity and machining capability.

Reduced production lead time by

Conventional machining

Machine 1 (Turning Center) -Setting -Turning -Remove and move workpiece

Machine 2 (Machining Center)

-Conventional Milling
 -Change fixture for the angular surface machining
 -Milling for the angular surface
 -Remove and move workpiece

-Setting

-Setting

-Turning

Machine 3 (Turning Center)

650 Minutes

Multi-tasking of PUMA SMX

Increased work efficiency using one time setup on one machine

Application

Performance

Multitasking, which is

performing more than

one duty at once, This

can lead to as much as

a 40 percent increase

in productivity and can

positively impact your

company's bottom line.

Basic information

Basic Structure Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

Using a single set up, one machine is capable of performing all machining processes that generally require two three or even more machines. By minimizing time and labor, the process cost is reduced and lead times are shortened by up to 75%. This provides a significant advantage when manufacturing small batches of a variety of products.

Providing 5-axis Complex Machining Capabilities (Standard when applying FANUC 31i-5)

Simultaneous 5-axis machining functions such as TCP* are built-in, thereby making the machining of complex shapes easier, such as an automotive engine impeller or an aero engine blade.

Tool Center Point Control

- Facilitating the high precision machining of the surface by automatic control of tool path
- Decreasing the time for the machining setup and the cutting process

Cutting point command option

- Increasing the productivity by automatically compensating when using various tool tips without changing the machining program
- Performing effective tool correction

Various Application

Just single machine, PUMA SMX series can meet all machining requirements. That's why, your investing in PUMA SMX series that boost your capabilities can take your operations to the highest level of performance, including your all-important return on investment.

Application Sample

Optimal Applications of High Productivity

Complex machining capabilities of the PUMA SMX series enable machining over a wide range of applications in various industries, such as aerospace, energy, shipbuilding, medical, etc.

Drill bits Industry | Energy Size | D165 X D175 Material | Stainless steel Tools | 15 Shaft Industry I General Size I D150 X L350 Material I Aluminum

| 14

Die roller Industry I Medical Size I D185 X L330 Material I Aluminum Tools I 9

Valve Industry | General Size | D300 X L450 Material | Stainless steel Tools | 6

Optimal Applications of Accuracy

Wide range of workpieces based on high precision

Stable control technology and excellent level of accuracy enables delicate and detailed workpiece machining.

Housing Industry I General Machinery Size I D150 X L300 Material I Aluminum Tools I 19

Tools

Industry I Aerospace Size I D120 X L80 Material I Aluminum Tools I 6

Industry |ElectronicsSize|D70 X L50Material |AluminumTools|50

Bucket bladeIndustry |EnergySize|85t x D120 x L600Material |Stainless steelTools|8

Basic information

Basic Structure Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

Award

Ergonomic

employing ergonomic

Design

Maximizes user's

convenience by

design concept

An excellently designed PUMA SMX series has received the world's leading design awards, such as **the 2014 German Red Dot**, **the 2013 Australian AIDA** (Australian International Design Award), **the 2013 Korean Good Design**, etc. Thus, it is internationally recognized for its shape, function, quality, safety sustainability and innovation.

Safety Design

Collision-caused

to decrease

Damage

By laying out the operation panel and tool magazine in a user-friendly way, tooling and workpiece setup become easier for the operator.

Machine Airbag Function

Machine airbag function minimizes damage in the event of a machine collision, defect or heavy load by detecting sudden axis load increase.

If a collision is detected by a sudden increase in torque during axis movement, the servo motor immediately moves in reverse to partially retract the cutter.

Easy Operation and Maintenance

Enhances ease of operation by the design based on the operator's functions and also provides maintenance functions that reduce downtime by decreasing the MTTR.*

User-friendly Operation Panel

The operator panel is designed to provide easy operation and also maintenance functions to reduce downtime. A large size 15-inch screen is applied as standard on the customized operator panel.

		15-inch wide scree display unit	n 15 inch 10,4 inch					
	_	Optimized system design that reflects Doosan's know-how from long-term experience and the customer's needs						
S		A design for easy operation	easy and convenient user interface, enhanced lamp visibility, optimized button size for easy operation and long life, use of a partition-type layout to prevent incorrect button operation					
		Addition of simple option buttons	additional function buttons can be easily fitted to spare sections of the operator panel					
		Customized function support	attachment of customized function switches and customized additional panel design					

Simple Alarm Function

Doosan's EOP* system enables the user to operate the NC* system more conveniently.

* EOP : Easy Operation Package / NC : Numerical Control

Tool Load Monitoring

It is possible to display various types of information about each tool and to monitor the tool load in real-time.

	COLUM INDEX SANT
	1285
a at the act the at	1912.1.2.966 [Denty
and the lot of the lot	F103,-40225 🗾 🐭
and and the set of the set of the set	HAT.
interior (minimum interior)	N-6425 📰 785.
E.T. Bin	2-8035 M
And a subscription of the	T-6225
	B-GETS and AND DE
	x, include the second second
and a second	C1-0075

Basic information

Basic Structure Main Units Machine Performance

Detailed Information

Options Diagrams Specifications

Customer Support Service

Customized User-friendly Flexible Operation Solutions

CUFOS is a PC based control system created by Doosan Machine Tools. Equipped with intuitive user-friendly functions such as a smart phone screen and easy customization, CUFOS helps to improve operational efficiency and performance for the user.

CLANE I

0000 00

080

.

30

의생의

Features of CUFOS

User-Friendly

- 19 inch Multi Touch Screen
- Multiple Apps such as –
- CPS app (Collision Protection System)
- Turn-cut app
- Tool management app
- Status monitoring and alarm guidance app
- Max. program memory : 40GB option
- App-based Interface for Smartphones & Tablet PC

Customized

- Simple Customization
- Extend Functionality with Additional apps
- Register for up to 6 individual users

Flexible

- Simple Connectivity with External Software (Cloud, Office etc.)
- SSD data server app
- PC based operating system (Windows®7)

CUFOS Interface

User-Friendly Interface

CUFOS, the PC-based control created by Doosan Machine Tools, is an integrated system solution using an intuitive 19 inch touch screen. The system provides a convenient operator interface, a high level of customization and many useful high technology apps.

Supports various Apps in three fields – Setup/Machining/Utility. It provides easy configuration by allowing the user to add and edit functions on the Home Screen according to job requirements.

CUFOS Open CNC

CUFOS operation for enhanced productivity

The CUFOS operating system is based upon the integration of all aspects of the manufacturing process, including setting, machining and maintenance. It consolidates up-to-date software technology created by Doosan Machine Tools, to improve overall efficiency and productivity. Using the system's modular construction, each function can be easy integrated with external PC software systems and applications, such as CAM and Tool Data systems.

CUFOS Machines

Maximizing efficiency for multi-tasking machining

Applied to those multi-tasking turning center like PUMA SMX series as well as high performance, high productivity horizontal machining center NHP/NHM series, CUFOS maximizes the operational efficiency by adding up-to-date software technology of Doosan Machine Tools including new developed application such as CPS (Collision Protection System), Turn-cut, and the Tool Management function etc.

Basic information

Basic Structure Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

Reduce downtime and

improve productivity by

providing CPS(Collision

Protection System), real-

and maintenance guides

time status monitoring

during operating the

machine

CPS (Collision Protection System)

A function to prevent real-time collision in manual mode between the tool and equipment / machine elements inside the working area. Applicable models :

NHM/NHP/PUMA SMX series

• Supports Sandvik's cloud-based tool library for creation of 3D tool model

Use the Setup Manager with the CPS app to build up the machine model, and add tool, workpiece and workholding equipment details.

SSD data server

As a PC based NC, it allows the HDD to be used as a storage space for machining program, saving time for program transfer.

Applicable models : NHM/NHP/PUMA SMX series 40GB* Max. file size 2GB Max. file number Up to 1000

(including folder)

Max. storage size

* Max. storage size is determined by the size of SSD in Panel iHPro. If customer need Max. storage size of 40GB, it is necessary to select SSD129GB(option).

NC control

Easy to convert the screen to standard FANUC format for operator convenience

Status monitoring & Alarm guidance

Displays the cause and necessary action for NC/PMC alarms during machine running time. The system can send an email containing the alarm message if the condition persists for a specified time period.

Make easy & interactive guides to facilitate machining preparations such as setting materials, tool management and warming-up

Warming up

Automatically checks if a warm up process is required, and displays the required operator procedure graphically. The requirement is automatically determined by the machine status.

Applicable model: PUMA SMX series

Utility

Support user convenience functions and additional software modules handling various peripheral devices like measurement

Setting

CUFOS Provides management and setting functions such as HMI parameter / User setting / Setup manager /e-mail

User setting

Allows the user to register and delete up to six persons from the user account. CUFOS apps and NC functions can be user-restricted as necessary.

Register user account up to six users

Memo

Users can generate memos, either with a high level of detail via screen capture, or entered by keyboard/ touchscreen. The user can add data to existing memos if required

Maximum 120 memos can be saved

Screen capture

Memo through touch screen or key board or using a captured screen

Utility

Basic information

Basic Structure

Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

Manual viewer Users can store and view manuals on the 19 inch screen.

Maintenance manager

Monitors the status of machine and control elements, and confirms the alarm condition and maintenance schedule for preventative maintenance.

Video viewer

Video transfer and viewer functions make clearer communication possible between operators and helpful for training new workers, complex job arrangement

* Video format : .wmv, .avi, .mpg, .mpeg, .mp2, mp3, .wav, .mov, .mp4 (same as Window media open files)

Sta Spe

Standard / Optional Specifications (CUFOS)

A diverse range of functions and apps are available to meet specific customer requirements.

NO.	Description	Features	PUMA SMX series	
1		19" Color LCD Screen	•	
2		•		
3			SSD 32GB (Max. storage size 10GB)	•
4	Hardware	Storage Memory	SSD 64GB (Max. storage size 20GB)	0
5			SSD 128GB (Max. storage size 40GB)	0
6		2point -touch panel port		•
7		Windows Embedded standard 7 Ope (Including the Recovery disk)	rating System	•
8		Doosan Tool Management for SMX	0	
9		0		
10		SSD Data server application	0	
11		Manager's Message Notification app	•	
12	Applications	FTP Server service	•	
13		Smart key access control application	Smart key access control application	
14		Memo application		•
15		Machine status Monitor application		•
16		Alarm guidance application		•
17		Manual viwer application		•
18		Calendar application		•
19	iHMI Basic	Browser application		•
20	Application	Maintenance Manager application		•
21		Data Logger application		•
22		Servo viewer application	•	

• Standard O Optional X Not applicable

* Please contact your Doosan machine tool representative for detailed solution information.

Standard / Optional Specifications

• Standard O Optional X Not applicable

Basic information NO. Division Basic Structure 1 Tool s Main Units 1 Tool s Machine 3 Autom Performance 4 chang CUFOS 5 Tool m Detailed 9 Tool m Information 10 11 Options 12 Tool m Diagrams 13 Work Specifications 14 holdin

Customer Support Service

NO.	Division	Option		PUMA SMX 2600	PUMA SMX 3100	SMX 3100L	PUMA SMX 2600S	SMX 3100S	SMX 3100LS	SMX 2600ST	PUMA SMX 3100ST
1	Tool chank	CAPTO C6		٠	•	•	•	•	٠	•	•
2	TOOLSHARK	HSK-A63		0	0	0	0	0	0	0	0
3	Automatic tool	3.5" operat	ion touch panel	•	•	•	•	•	•	•	•
4	changer	10.4" oper	ation touch panel	0	0	0	0	0	0	0	0
5	Tool magazine	40 tools		•	•	•	•	•	•		•
7	lootinagazine	120 tools		X	x	X	X	x	X	0*	0*
,	Long boring bar	244 4		X	×	~	X	×	~	-	
8	magazine	3 tools		X	X	0	X	X	0	X	X
9		Left	Hydraulic chuck 10"	•	Х	Х	•	Х	Х	•	Х
10		spindle	Hydraulic chuck 12"	0	•	•	0	•	•	0	•
11		Pight	Hydraulic chuck 15"	X		0 V	X	0	0	X	0
13		spindle	Hydraulic chuck 10"	X	X	X	0	0	0	0	0
14	Work	Dual pressu	re chucking	0	0	0	0	0	0	0	0
15	device	Chuck clam	o confirmation	0	0	0	0	0	0	0	0
16	active	Servo driver	n steady rest(SLU3.1~SLU5)	0	0	0	0	0	0	X	X
		-Steady rest	parking function is impossible								
17		Servo driver	tion	Х	X	0	Х	X	0	Х	X
18		Servo driver	steady rest(SLU3Z or 3.1Z or 3.2Z) - for Lower turret	Х	Х	Х	Х	Х	Х	0	0
19		T-T-C	Pressure 1.0MPa (145 psi)/bag filter	•	•	•	•	•	•	•	•
20		(Through	Pressure 3.0MPa (435 psi) / Cyclone filter	0	0	0	0	0	0	0	0
21		Tool	Pressure 7.0MPa (1015 psi) / Cyclone filter	0	0	0	0	0	0	0	0
22		Coolant)	Pressure 7.0MPa (1015 psi)/paper filter	0	0	0	0	0	0	0	0
23		spindle	MQL (Minimum quantity lubrication) system	0	0	0	0	0	0	0	0
24	Coolant		Pressure 0.45MPa (65.2psi) / Tank screen fiter	Х	Х	Х	Х	Х	Х	•	•
25		FOR LOWER	Pressure 0.7 / 1.0 / 1.45 MPa (101.5/145/151.1 psi) /	×	X	Y	×	×	×	0	0
25			Tank screen fiter	~	~	~	~	~	~		
26		Oil skimmer		0	0	0	0	0	0	0	0
27		(Standard fo	r milling spindle / option for lower turret)	•	•	•	•	•	•	•	•
28		Coolant lev	el switch : Sensing level - Low	•	•	•	•	•	•	•	•
29		Chip convey	or (Right disposal)	0	0	0	0	0	0	0	0
31		Chip bucke	t	0	0	0	0	0	0	0	0
32		Air blower (for Left or Right spindle chuck)			•	•	•	•	•	•	•
33	Chip	Chuck cool	ant (for Left or Right spindle chuck)	0	0	0	0	0	0	0	0
34	disposal	Shower coo	andle coolant (Lent of Right)	0	0	0	0	0	0		
36		Coolant gu	n	0	0	0	0	0	0	0	0
37		Airgun		0	0	0	0	0	0	0	0
38		Mist collect	tor	0	0	0	0	0	0	0	0
39		Thermal co	mpensation	•	•	•	•	•	•	•	•
40		Ball screw c	pre cooling (X-axis)	•	•	•	•	•	•		•
41	High	Coolant chil	ler (temperature control)	0	0	0	0	0	0		
43	accuracy	Linear scale	feed back (X1-axis)	0	0	•	0	0	•	0	0
44		Linear scale	feed back (X2-axis)	Х	Х	Х	Х	Х	Х	0	0
45		Linear scale	feed back (Y/Z-axis)	0	0	0	0	0	0	0	0
46	Measurement	Auto tool se	tter	0	0	0	0	0	0	0	0
47		Auto workpi	ece measurement (RMP60)	0	0	0	0	0	0	0	0
48		Workpiece e	ierand conveyor	×		X	0	0	×		
50	Automation	Bar feeder in	nterface	0	0	0	0	0	0	0*	0*
51		Automatic fr	ont door (with safety device)	0	0	0	0	0	0	0	0
52		Doosan tool	monitoring system	•	•	•	•	•	•	•	•
53		Rotay type w	vindow wiper	0	0	0	0	0	0	0	0
54	Others	Intelligent K	Inematic Compensation for Multi-tasking	•	•	•	•	•	•	•	•
55		Intelligent K	inomatic Companyation for Multi tasking (Datum Pall gage)	0	0	0	0	0	0		
55		Ouick change	tooling(CADTO) **	0	0	0	0	0	0		
	56 Quick change tooling(CAPTO) ***						0		0		
57	Accessories	FOUNDATION BOLT FOR ANCHORING		•	•	•	•	•	•	•	•
58		STEADY DEC		X	X	X	0 Y	0 X	X	0	0
60		V STAND FO	R SHAFT WORKPIECE	0	0	0	0	0	0	0	0
61		AIR LIMIT SE	NSING ON CHUCK_PREPARATION	0	0	0	0	0	0	0	0
62		DISPLAY UNIT SIZE_19.0 INCH COLOR TOOL SETTER EXTENSION FOR SPECIAL CHUCK		0	0	0	0	0	0	0	0
63				Х	Х	Х	Х	Х	Х	0	0
64	Customized	MAIN/LEFT S	SPINDLE AIR CURTAIN	0	0	0	0	0	0	0	0
65	Special Option	SUB/RIGHT		X	X	X	0	0	0	0	0
67		TOOL SETTE	R NON-CONTACTING BILIM	0	0	0	0	0	0	0	0
68		COOLANT FC	DR MILLING SPDL_MULTI PRESSURE	0	0	0	0	0	0	0	0
69		MQL SYSTEM	Λ	0	0	0	0	0	0	0	0
70		TOOL ID CHE	CK SYSTEM_MANUAL	0	0	0	0	0	0	0	0
71		ADDITIONAL		0	0	0	0	0	0	0	0
/2		ANGULAR HEAD FOR MILLING SPINDLE_ATC			0	0	0	0	0	0	

* Bar feeder interface is not available in case of PUMA SMX2600ST/3100ST with ATC 120 tool magazine.

** Lower turret Applicable

Servo driven Steady rest Option 16, 17, 18

This equipment supports long workpieces during the machining process. Linear positioning of the steady rest is achieved by servo motor and ball screw and can be positioned during cycle.

Steady rest parking function *

When you don't want to use steady rest, you can make it parked under left chuck.

* This function is possible just for PUMA SMX3100L/LS with the steady rest selected one from among SLU5.1, K5.0 and K5.1.

Applicable model	Steady rest	Working range
DIIMA CMY2600 / C	SLU-3.1	Ø20~Ø165 mm (0.8~6.5 inch)
	SLU-3.2	Ø50~Ø200 mm (2.0~7.9 inch)
(Stoady roct parking function is impossible)	SLU-4	Ø35~Ø245 mm (1.4~9.6 inch)
(Steady lest parking function is impossible)	SLU-5	Ø50~Ø310 mm (2.0~12.2 inch)
	SLU-5.1	Ø85~Ø350 mm (3.3~13.8 inch)
(Standy ract parking function is impossible)	K 5.0	Ø80~Ø390 mm (3.1~15.4 inch)
(Steady lest parking function is impossible)	K 5.1	Ø100~Ø410 mm (3.9~16.1 inch)
DUMA CMV2/00CT / 2100CT	SLU-3	Ø12~Ø152 mm (0.5~6.0 inch)
Stoody root for lower turnet	SLU-3.1	Ø20~Ø165 mm (0.8~6.5 inch)
- Steady lest for lower luffel	SLU-3.2	Ø50~Ø200 mm (2.0~7.9 inch)

In PUMA SMX2600/S, 3100/S, the steady rest parking function is not possible. And also, the function is not possible when the steady rest is selected from among SLU-3.1 to SLU-5 for PUMA SMX3100L/LS.

O Using 15-inch chuck in PUMA SMX3100L/LS instead of standard 12-inch, if you select Servo driven Steady rest for PUMA SMX3100L/LS, the steady rest must be K5.1 to make it use of steady rest parking function.

Chip Conveyor (Right side exit) Option 31

The conveyor provides a superior chip removal system and is designed with a stable structure for easy maintenance and reduced leakage. By selecting the correct type of conveyor, the efficiency of the machine working area is increased.

Name	Hinge Belt	Magnetic Scraper	Drum filter +Hinge scraper (Double type)
Application	For steel	For castings	For steel, castings, nonferrous metal
Features	- General - Appropriate for a heavy material chip of more than 30mm in length	 Easy maintenance Eject the chip by scraping and raising the chip with the scraper 	- Appropriate for both a long and a short chip - Filtering coolant
Shape			

Coolant Chiller (Recommendation) Option 43

A coolant chiller minimizes the thermal deformation by controlling the temperature of the return coolant to the machine, thus improving the accuracy.

Optional Equipment for Automation

Various peripheral equipment is available to support the SMX to improve its performance and productivity.

Tailstock application for lower turret option

steady rest to support long and slim components for improving machining stability
Tailstock application for lower turret is available to PUMA SMX2600ST/3100ST. Option

Tool Setter (Automatic) option 47

Auto linear motion type tool setter has been installed for tool measurement and tool wear detection. It is stored in a safe location during the machining process, and can be activated with the workpiece still in place in the chuck with no interference.

Gear skiving solutions

We propose a dramatic improvement in productivity with gear skiving solutions such as power skiving, invo-milling, and hobbing, which allow high-precision external / internal gear machining with a single setting.

* Please contact to DOOSAN on further information.

Linear scale option 44, 45, 46

We propose linear scale when you want to achieve high accuracy of simultaneous 5-axis machining, long term machining and higher feed precision.

Quick change CAPTO Option 57

The Quick Change Tool system simplifies tool change operation. Recommended for users who need to change tools frequently or reduce the set-up time.

* Lower turret Applicable

Spindle Power – Torque Diagram

PUMA SMX series

Basic information

Basic Structure Main Units Machine Performance CUFOS

Options Diagrams

Customer Support

Specifications

Service

PUMA SMX2600ST/3100ST Right spindle

PUMA SMX2600ST / 3100ST Rotary tool for lower turret (Milling) PUMA SMX2600/3100 Milling spindle

External Dimensions

PUMA SMX2600/S, 3100/L/S/LS (40/80 Tools)

Unit : mm (inch)

Top view

* PUMA SMX3100L / LS

Front view

Machine foundation : Anchoring is recommended to maintain accuracy over a long period of time. The anchor bolts and other related parts for foundation work are supplied as standard items. Please consult with Doosan and sales technicians regarding ground and operating conditions.

External Dimensions

PUMA SMX2600ST/ 3100ST (40/80 Tools)

Basic information

Basic Structure Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

Chip conveyor type	a	a	C C
Hinge belt type	1498 (59.0)	0	1100 (43.3)
Drum filter+Hinge scraper type	2386 (93.9)	70 (2.8)	1050 (41.3)

Front view

Machine foundation : Anchoring is recommended to maintain accuracy over a long period of time. The anchor bolts and other related parts for foundation work are supplied as standard items. Please consult with Doosan and sales technicians regarding ground and operating conditions.

Unit : mm (inch)

PUMA SMX2600ST/ 3100ST (120 Tools)

To prive

cinp conveyor type	a	U	L L	
Hinge belt type	1498 (59.0)	0	1100 (43.3)	
Drum filter+Hinge scraper type	2386 (93.9)	70 (2.8)	1050 (41.3)	

Front view

Machine foundation : Anchoring is recommended to maintain accuracy over a long period of time. The anchor bolts and other related parts for foundation work are supplied as standard items. Please consult with Doosan and sales technicians regarding ground and operating conditions.

Unit : mm (inch)

Working Range

PUMA SMX2600/SMX3100 series

Basic Structure Main Units

Basic information

Machine Performance CUFOS

Detailed Information

Options Diagrams

Specifications

Customer Support Service

Model	A	В	С	D	E	F	G	Н		J	К	L	М	N	0
PUMA SMX2600	2321	1585	480	1166	218	237	393	156 (6.1)	608	450	515	10	247	1562	463
PUMA SMX3100	(91.4)	(62.4)	(18.9)	(45.9)	(8.6)	(9.3)	(15.5)	176 (6.93)	(23.9)	(17.7)	(20.3)	(0.4)	(9.7)	(61.5)	(18.2)
PUMA SMX3100L	3223 (126.9)	2585 (101.8)	382 (15)	2168 (85.4)	216 (8.5)	195 (7.7)	435 (17.1)	176 (6.93)	1610 (63.4)*	450 (17.7)*	515 (20.3)	12 (0.5)	313 (12.3)	2500 (98.4)	361 (14.2)

 \ast "I" and "J" can be different depends on an applied long boring bar

Y-axis working rage

Unit : mm (inch) B

B-axis rotating range

Unit : mm (inch)

PUMA SMX2600S/SMX3100S series

* "G" and "H" can be different depends on an applied long boring bar

Y-axis working rage

Unit : mm (inch)

B-axis rotating range

Unit : mm (inch)

Working Range

PUMA SMX2600ST/SMX3100ST

Basic information

Main Units Machine Performance CUFOS

Detailed

Information Options Diagrams Specifications

Customer Support Service

Basic Structure

Unit : mm (inch)

ID Tool Holder

Model	Unit	А	В	С	D	E
PUMA SMX2600ST (10"Chuck)	mm (inch)	ø254 (10.0)	156 (6.1)	1897 (74.7)	114 (4.5)	77 (3.0)
PUMA SMX3100ST (12" Chuck)	mm (inch)	ø315 (12.4)	176.5 (6.9)	1917 (75.5)	134 (5.3)	57 (2.2)

Tool Interference Diagram of Lower Turret

Basic information For 7

Basic Structure Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

For Turn-Milling (12 stations, BMT65P)

Unit : mm (inch)

Tooling System

PUMA SMX2600ST/SMX3100ST

Unit : mm (inch)

Machine Specifications

Detailed Information

Options Diagrams Specifications

Customer Support Service

PUMA SMX 2600 /3100

Standard Features

- Tool and tool boxThrough spindle coolant for milling spindle
- Door interlock
- Level bolt and plate
- Servo tail stock (for PUMA SMX2600/3100/3100L)
- Soft jaws
- Spindle head cooling system
- Hydraulic unit
- Automatic coolant systemWork lamp
- Standard hydraulic chuck
- X-axis linear scale
- (only PUMA SMX3100L/LS)

ltem			Unit	PUMA SMX2600	PUMA SMX2600S
Capacity	Swing over bed		mm (inch)	660	(26.0)
	Recom. turning diameter		mm (inch)	255	(10.0)
	Max. turning diameter		mm (inch)	660	(26.0)
	Max. turning length		mm (inch)	1540	(60.6)
		Left spindle	inch	10 {	[12]*
	Chuck size	Right spindle	inch	-	10 {12}*
	Chuck work weight (inclue	de chuck)	kg (lb)	260 (573.2)
	Shaft work weight (includ	e chuck)	kg (lb)	520 (1	146.4)
	Bar working diameter		mm (inch)	81	(3.2)
Travels		X-axis	mm (inch)	630	(24.8)
		Y-axis	mm (inch)	300 (±150)	(11.8 (±5.9))
		Z-axis	mm (inch)	1585	(62.4)
	Travel distance	A-axis**	mm (inch)	1562 (61.5)	1605 (63.2)
		B-axis	deg	240	(±120)
		C1-axis / C2-axis	deg	360	/ 360
		X2-axis / Z2-axis	mm (inch)	-	-
		X-axis	m/min (ipm)	48 (1	889.8)
		Y-axis	m/min (ipm)	36 (1	417.3)
		Z-axis	m/min (ipm)	48 (1	889.8)
	Rapid traverse rate	A-axis**	m/min (ipm)	-	30 (1181.1)
		B-axis	r/min	4	10
		C1-axis / C2-axis	r/min	200	/ 200
		X2-axis / Z2-axis	m/min (ipm)	-	-
Left	Max. spindle speed		r/min	40	000
spinute	Spindle motor power (30)	nin/cont.)	kW (Hp)	26/22 (34.9/29.5)	
	Spindle nose	<u> </u>	ASA	A	2-8
	Spindle bearing diameter	(Front)	mm (inch)	130	(5.1)
	Spindle through hole		mm (inch)	91	(3.6)
21.1.1	Min. spindle indexing ang	gle (C1-axis)	deg	0.0	001
Right	Max. spindle speed	• / • • >	r/min	-	4000
spinate	Spindle motor power (30)	min/cont.)	KW (Hp)	-	26/22 (34.9/29.5)
	Spindle hoering diameter	(Frent)	ASA mana (in ala)	-	A2-8
	Spindle bearing diameter	(Front)	mm (inch)	-	130 (5.1)
	Min_cnindle_indexing and	rla (C2 avic)	dog	-	91 (3.0)
Milling spindle	Max, spinule muexing ang	(C2-dxIS)	r/min	- 12000	[0.001 [8000]*
mung spinate	Milling spindle motor pov	ver (2.5min/10min/Cont)	kW (Hp)	26/18 5/15 (3	(0000) / 9/2/ 8/20 1)
	Min spindle indexing and	ver (2.9min, 10min, cont.)	deg	20/10.5/15 (5	001
Automatic	Tool storage cana. (Max.)		ea	40	[80]*
Tool	Tool shank		-	CAPTO C6	{HSK-A63}*
Changer	Max, tool diameter contin	0115	mm (inch)	90	(3.5)
	Max, tool diameter withou	ut adiacent tools	mm (inch)	130	(5.1)
	Max. tool length	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mm (inch)	450	(17.7)
	Max. tool weight		kg (lb)	12 (26.5)
	Max. tool moment		N⋅m (ft-lbs)	9.8	(7.2)
		Tool-to-tool	sec	1	.8
	lool change time (I-I-I)	Chip-to-chip	sec	7	.8
Lower turret	No. of tool stations		ea		-
	OD tool size		mm (inch)		-
	Max. boring bar size		mm (inch)		-
	Turret Indexing time (1 sta	ation swivel)	S		-
	Max. rotary tool speed		r/min	-	
Long Boring Bar	Tool storage capacity (Ma	x.)	ea		
Magazine (option for SMX 3100L/LS)	Max. tool size		mm (inch)		
	Max. tool weight		kg (lb)		-
Tail Stock	Quill bore taper		MT	#5	-
	Quill travel		mm (inch)	1562 (61.5)	-
Coolant	Coolant pump motor pow	er	kW (Hp)	2.2	(3.0)
Power source	Electric power supply (rat	ed capacity)	kVA	64.61	89.91
Machine	Height		mm (inch)	2750 (108.3)	2750 (108.3)
Dimensions	Length		mm (inch)	4900 (192.9)	4900 (192.9)
	-		mm (inch)	3011 (118 5)	2011 (119 5)
	Width			JUII (II0.J)	2011 (110.2)
	Width Weight		kg (lb)	15800 (34832.5)	16200 (35714.4)

PUAK SUCPANSPUAK SUCPANSPUAK SUCPANSPUAK SUCPANSPUAK SUCPANS255 10.0 II							
98/10.0 98/10.0 93/10.0 <	PUMA SMX2600ST	PUMA SMX3100	PUMA SMX3100L	PUMA SMX3100S	PUMA SMX3100ST	PUMA SMX3100LS	
325 00.00 [Lawer-Loop 1.40, (15.0)] 0 (30 (20.0) (Lawer-Loop 1.40, (15.0)] 90 (20.0) (Lawer-Loop 1.40, (15.0)] 90 (20.0) (Lawer-Loop 1.40, (15.0)] 90 (20.0) (Lawer-Loop 1.40, (15.0)] 90 (20.0) (15.0) 90 (20.0) (10.0) 90 (20.0) <td></td> <td></td> <td>660 (2</td> <td>6.0)</td> <td>L</td> <td>L</td>			660 (2	6.0)	L	L	
	255 (10.0)			315 (12.4)			
[Insertance: 4.09 (15.9] 000 (0.0.0) 100 (0.0.0) 000 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 12119 ¹⁰ 100 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 100 (0.0.0) 100 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 100 (0.0.0) 100 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 100 (0.0.0) 100 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 100 (0.0.0) 100 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 100 (0.0.0) 100 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 155 (0.0.0) 255 (0.0.0) 255 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 155 (0.0.0) 255 (0.0.0) 255 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 155 (0.0.0) 255 (0.0.0) 255 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 155 (0.0.0) 255 (0.0.0) 255 (0.0.0) 255 (0.0.0) 1300 (0.0.0) 1-0 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0) 155 (0.0.0)	660 (26.0)		((0,(2(,0))		660 (26.0)	((0(2(0)	
1540 (64.6) 1560 (66.6) 2540 (100.6) 1560 (06.6) 2540 (100.6) 101 (17)* - - 101 (17)* 100 (17)* - - 300 (110.2) 100 (17)* - - 300 (110.2) 200 (110.4) - 100 (12.6) - 00 (12.6) 300 (110.2) - 100 (12.6) 0.00 (4.6) - 0.00 (4.6) 300 (110.2) - 0.00 (4.6) - 0.00 (4.6) 2550 (01.6)<	[Lower turret : 405 (15.9)]		660 (26.0)		[Lower turret : 405 (15.9)]	000 (26.0)	
10(12) 12(15)* 12(15)* 10(12) 10(12)* 10(12)* 200(114.0) 100(20.0) 100(20.0) 30(10.23) 100(20.0) 690(20.0) 30(10.23) 100(20.0) 690(20.0) 30(10.10) 100(20.0) 100(60.0) 2205(100.0) 30(10.10) 100(20.0) 100(60.0) 2205(100.0) 30(100.0) 3597(15.0) 2205(100.0) 100(60.0) 200(00.0) 30(100.0) 3597(15.0) 200(00.0) 100(60.0) 200(00.0) 30(100.0) 100(60.0) 205(15.0) 201(10.0) 200(00.0) 30(100.0) 100(100.0) 201(100.0) 201(100.0) 201(100.0) 30(100.0) - 20(200.0) 201(100.0) 201(100.0) 201(100.0) 30(100.0) - 20(200.0) 201(100.0) 201(100.0) 201(100.0) 30(200.0) - 20(200.0) 201(100.0) 201(100.0) 201(100.0) 30(200.0) - 20(200.0) 201(100.0) 201(100.0)	1540 (60.6)	1540 (60.6)	2540 (100.0)	1540) (60.6)	2540 (100.0)	
16 (12)* . . 10 (12)* 260 (27.3)	10 {12}*			12 {15}*			
200 (173.2) 500 (1106.2) 501 (1166.4)	10 {12}*	-	-		10 {12}*		
1000 (2204.0) 1000 (2204.0) 695 (27.4) <th7< td=""><td>260 (573.2)</td><td></td><td>· · · ·</td><td>500 (1102.3)</td><td></td><td></td></th7<>	260 (573.2)		· · · ·	500 (1102.3)			
BI (3.7) 102 (6.9) (6.9) (7.24) (6.9) (7.24) (6.9) (7.24) (6.9) (7.24) (6.9) (7.24) (6.9) (7.24) (6.9) (7.24) (6.9) (7.24) (7.9) (7.9) (7.9) (7.9) <th colspan<="" td=""><td>520 (1146.4)</td><td></td><td></td><td>1000 (2204.6)</td><td></td><td></td></th>	<td>520 (1146.4)</td> <td></td> <td></td> <td>1000 (2204.6)</td> <td></td> <td></td>	520 (1146.4)			1000 (2204.6)		
895 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 697 (27.4) 797 (57	81 (3.2)			102 (4.0)			
300 (±30) (11.8 (±5.3)) 500 (±5.0) 555 (±5.0) 556 (±5.0) <th block"="" colspa="2</td><td>695 (27.4)</td><td></td><td>630 (24.8)</td><td></td><td>695 (27.4)</td><td>630 (24.8)</td></tr><tr><td><math display=">\begin{array}{ c c c c c c c c c c c c c c c c c c c</th>	\begin{array}{ c c c c c c c c c c c c c c c c c c c			300 (+150) (1	1 8 (+5 9))		
$\begin{array}{ c c c c c c c } 1500 (60.1) & 1500 (60.1) & 1500 (60.1) & 1500 (60.1) & 1500 (60.1) & 2500 (98.4) & 2500 (98.4) & 2500 (98.4) & 2500 (98.4) & 2500 (98.4) & 2500 (98.4) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 460 (1898.8) & 300 (1181.1) & 300 (511$	1585 (6	(2 /l)	2585 (101.8)	1585	(62 /J)	2585 (101.8)	
100 0000 100 0000 100 0000 100 0000 100 0000 235 / 1540 (9.3 / 64.6) - 360 / 390 - - 360 / 390 235 / 1540 (9.3 / 64.6) - - 360 / 390 -	1540 (60 6)	1562 (61 5)	2500 (08 4)	1605 (63.2)	1540 (60 6)	2500 (98 4)	
1000 1000 235 / 1540 (0.3 / 60.0) - - 235 / 1540 (0.3 / 60.0) -	1940 (00.0)	1902 (01.9)	2300 (30.4)	120)	1940 (00.0)	2,500 (98.4)	
235/1540 (9.3 / 60.6) · 235/1540 (9.3 / 60.6) · 48 (1899.8) 46 (1899.8) 30 (1181.1) 48 (1899.8) 30 (1181.1) 48 (1899.8) 46 (1897.8) 30 (1181.1) 48 (1899.8) 30 (1181.1) 30 (1181.1) - 0 30 (1181.1) 30 (1181.1) 24 / 36 (944.9 / 1417.3) - 30 (1181.1) - - 4000 - 1000 -			240 (±	120)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			360 /	360			
A6 (1889.8) 30 (1181.1) A6 (1869.8) 30 (1181.1) 40 30 (1181.1) 46 (1869.8) 30 (1181.1) 40 30 (1181.1) 40 30 (1181.1) 200 / 200 200 / 200 200 / 200 400 300 (1181.1) - 400 300 (1181.1) - 400 300 (1181.1) - 400 300 (1181.1) - 400 300 (1181.1) - 4000 - 300 (1181.1) 4000 - 300 (1181.1) 4000 - 300 (1181.1) 4000 - 300 (1181.1) 4000 - 300 (1181.1) 12000 - 300 (1181.1) 12000 - 40.100 (3) 21300 - - 21300 - - 21200 (20,292) - - 0.001 21300 (300 - - 0.001 - 21300 (300 - - 1.0	235 / 1540 (9.3 / 60.6)	•	-	-	235 / 1540 (9.3 / 60.6)	-	
$\begin{array}{ c c c c c } & 36 (1385.9) & 30 (1181.1) & 48 (1889.8) & 30 (1181.1) \\ \hline 30 (1181.1) & & & & & & & & & & & & & & & & & & &$			48 (18)	39.8)			
A8 (1895,9) 48 (1895,9) 30 (1181,1) 46 (1893,9) 30 (1181,1) 20 (181,1) .			36 (14	17.3)			
30 (1181.1) .	48 (1889.8)	48 (1889.8)	30 (1181.1)	48 (1	889.8)	30 (1181.1)	
40 20/36 (944.9/1417.3) - 20/36 (944.9/1417.3) - 20/36 (944.9/1417.3) - 20/36 (944.9/1417.3) - 20/32 (40,273.5) 3002 (40,273.5) 7 20/36 (944.9/1417.3) - 20/36 (944.9/1417.3) - 20/36 (94.9/24) 20/36 (94.9/24) (147.7) 7 20/36 (94.9/24) (147.7) 3002 (40.00) 20/22 (34.9/29.5) 30(5.1) 20/22 (34.9/29.5) 20/22 (34.9/29.5) 20/22 (34.9/29.5) 20/22 (34.9/29.5) 30(5.1) 20/22 (34.9/29.5) 30(5.1) 20/23 (39.01) 20/23 (30.01) 20/23 (30.01) 20/23 (30.01) 20/23 (30.01) 20/23 (30.01) 2 <th c<="" td=""><td>30 (1181.1)</td><td>-</td><td>-</td><td></td><td>30 (1181.1)</td><td></td></th>	<td>30 (1181.1)</td> <td>-</td> <td>-</td> <td></td> <td>30 (1181.1)</td> <td></td>	30 (1181.1)	-	-		30 (1181.1)	
200 200 24/36 (94.4 / 1417.3) . 24/36 (94.4 / 1417.3) . 4000			40)			
24 / 15 (944.9 / 1417.3) 24 / 36 (944.9 / 1417.3) . 0000 . <			200 /	200			
4000 3000 26/22 (As /2725) 30125 (AC /2135) A2.8 A2.11 130 (5.1) 160 (6.3) 91 (5.6) 115 (4.5) 0.0001 0.0001 4000 - 4000 - 26/22 (34.9/29.5) - A2.8 - 313 (5.1) - 313 (5.1) - 313 (5.1) - 313 (5.1) - 313 (5.1) - 313 (5.1) - 312 (60/2) - 30001 - - - 130 (5.1) - - - 26/18.5/15 (8.4/24.8/20.1) - 0.0001 - - 12000 (80.0)* 40 (80/120)* 40 (80/2)* 90 (5.3) - 130 (5.1) - - - 130 (5.1) - - - 98 (C.7) - <t< td=""><td>24 / 36 (944.9 / 1417.3)</td><td>-</td><td>-</td><td>-</td><td>24 / 36 (944.9 / 1417.3)</td><td>-</td></t<>	24 / 36 (944.9 / 1417.3)	-	-	-	24 / 36 (944.9 / 1417.3)	-	
26/22 (24,9/29.5) 30/25 (02,7/3.5) A2-8 A2-11 130 (5.1) 160 (6.3) 91 (5.6) 115 (4.5) 0.0001 0.0001 4000 - 4000 - 26/22 (4.9/29.5) - 26/22 (4.9/29.5) - 42/8 - 313 (5.1) - 26/22 (4.9/29.5) - 42/8 - 313 (5.1) - 91 (5.6) - 91 (5.6) - 91 (5.6) - 0.001 - 26/18.5/15 (34.9/24.8/20.1) 0.001 0.001 - 0.001 40 (80/120)* 40 (80)* 40 (80)* 40 (80/120)* 40 (80)* 40 (80)* 10 (2.6.5) - 110 (5.1) 40 (80/120)* - 12 - 110 (5.1) - 12 (5.0) - 12 (5.0) - 12 (5.0) - 12 (5.0) -	4000		· · · ·	3000	×	*	
$\begin{array}{ c c c c c } \hline A2.6 & A2.1 & A2.1$	26/22 (34,9/29,5)			30/25 (40.2/33.5)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A2-8			A2-11			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	130 (5 1)			160 (6 3)			
$\begin{array}{ c c c c c c c } \hline 11000 \\ \hline 1100 \\ \hline$	91 (3.6)			115 (4.5)			
$ \begin{array}{ c c c c } \hline 0.0001 & 0.0001 & 0.0001 \\ \hline 0.0001 & 0.0001 & 0.0001 \\ \hline 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ \hline 0.001 & 0.001 & 0.001 & 0.001 \\ \hline 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ \hline 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ \hline 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ \hline 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ \hline 0.001 & 0.001 $	0.0001			0.0001			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.0001		1	0.0001	4000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4000 2(/22 (24 0/20 F)		-		4000		
A.2.8 · · · A.2.8 130 (5.1) · · 130 (5.1) · 130 (5.1) 91 (3.6) · · 91 (3.6) 0.001 0.001 · · 0.001 0.001 L26/18.5/15 (34.9/24.8/20.1) 0.001 40 (80/* 40 (80/120)* 40 (80/* 40 (80/* 40 (80/120)* 40 (80/* 40 (80/* 40 (80/120)* 40 (80/* 40 (80/* 40 (80/* 40 (80/* 130 (5.1) 130 (5.1) 130 (5.1) 130 (5.1) 130 (5.1) 12 12 12 12 12 12 1.8 1.8 1.8 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9	26/22 (34.9/29.5)		-		26/22 (34.9/29.5)		
130 (5.1) · · 130 (5.1) 91 (3.6) · · 91 (3.6) 0.001 · · 0.001 0.001 · · 0.001 26/18.5/15 (34.9/24.8/20.1) 0.0001 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 40 (80/120)* 50 (61/17.7) 40 (80/120)* 40 (80/120)* 50 (17.7) 12 (26.5) 12 (26.5) 12 (26.5) 12 (21.0) 12 (21.0) (25 (1.0) . 6.0 6.0 12 (21.0) . 12 (21.0) . <td>A2-8</td> <td>•</td> <td>-</td> <td></td> <td>A2-8</td> <td></td>	A2-8	•	-		A2-8		
$\begin{array}{ c c c c c c } \hline 91 (3.6) & & & & & & & & & & & & & & & & & & &$	130 (5.1)	•	-		130 (5.1)		
0.001 . 0.001 1200 (800)* 26/18.5/15 (34.9/24.8/20.1) 0.0001 40 (80/120)* 40 (80/120)* 40 (80)* 40 (80/20)* 40 (80/120)* 40 (80)* 40 (80/20)* 40 (80/120)* 40 (80)* CAPTO C6 (H5K.A63)* 90 (3.5) 130 (5.1) 12 (26.5) 1.2 (26.5) 2.2 (3.0) 1.2 (2.7) 1.2 (2.6) 1.2 (2.6) 2.2 (3.0) 1.2 (2.6) 1.2 (2.6) 1.2 (2.6) 2.2 (3.0) 1.2 (2.0) (@60 × L600 or @30 × L800 (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.2)	91 (3.6)	-	-		91 (3.6)		
$\begin{array}{ c } \hline 1200 (800)^8 & \hline 1200 (800)^8 & \hline 1200 (800)^2 & \hline 1200 (800)^2 & \hline 0.0001 & \hline 0.001$	0.001	-	-		0.001		
$\begin{array}{ $			12000 {8	3000}*			
$\begin{array}{ $			26/18.5/15 (34	.9/24.8/20.1)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.00	01			
$\begin{tabular}{ c c c c } \hline CAPTO C6 (ISS: AG3)* \\ \hline $90 (3.5)$ \\ \hline $90 (3.5)$ \\ \hline $90 (3.5)$ \\ \hline $90 (3.5)$ \\ \hline $100 (3.5)$	40 {80/120}*		40 {80}*		40 {80/120}*	40 {80}*	
$ \begin{array}{ $			CAPTO C6 {H	ISK-A63}*			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			90 (3	.5)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			130 (5.1)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			450 (1	7.7)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			12 (2)	6.5)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			9.8 (7	7.2)			
7.8 7.8 12 7.8 12 1 1 25 (1.0) 1 25 (1.0) - 25 (1.0) 25 (1.0) - 0.2 (3.0) - 0.2 (3.0) 0.2 - 0.2 - 5000 - 0.2 - 5000 - - - - 5000 - - <			9.0 (/ 1 s	,			
12 . 12 . 25 (1.0) . . 25 (1.0) . 40 (1.6) . . 40 (1.6) . 0.2 . . 0.2 . 5000 . . 0.2 . 5000 . . 0.2 . 5000 5000 6000 t600 or 930 x L800 (\$2.4 x L23.6 or \$0.1 x x L31.5))* <			7 9				
12 12 12 1 25 (1.0) 25 (1.0) 25 (1.0) 40 (1.6) 40 (1.6) 0.2 0.2 5000 5000 (3)* (3)* (3)* (3)* (12 (3)* (3)* (3)* (12 (3)* (13)* (3)* (15)* (3)* (15)* (15)* (15)* (15)* (15)*	12		/.0	,	10		
25 (1.0) 25 (1.0) 25 (1.0) 1 40 (1.6) - 40 (1.6) - 0.2 0.2 0.2 . 5000 . 0.2 . 5000 . 5000 . . (§60 × L600 or Ø30 × L800 (Ø2.4 × L23.6 or Ø1.2 × L31.5))* (§60 × L600 or Ø30 × L800 (Ø2.4 × L23.6 or Ø1.2 × L31.5))* (§60 × L600 or Ø30 × L800 (Ø2.4 × L23.6 or Ø1.2 × L31.5))* . . {158* {159* <td>12</td> <td></td> <td>-</td> <td></td> <td>12</td> <td>-</td>	12		-		12	-	
40 (1.6) 40 (1.6) 40 (1.6) . 0.2 . 0.2 0.2 . 5000 . 0.2 . 0.2 . 5000 .	25 (1.0)		-		25 (1.0)	-	
0.2 0.2 0.2 0.2 5000 - 5000 - 5000 - 5000 - . (3)* 5000 - . (3)* (3)* (3)* . (%00 x L600 or Ø30 x L800 (Ø2.4 x L23.6 or Ø1.2 x L31.5))* (%00 x L600 or Ø30 x L800 (Ø2.4 x L23.6 or Ø1.2 x L31.5))* (%00 x L600 or Ø30 x L800 (Ø2.4 x L23.6 or Ø1.2 x L31.5))* . . (15)* (%00 x L600 or Ø30 x L800 (Ø2.4 x L23.6 or Ø1.2 x L31.5))* (%00 x L600 or Ø30 x L800 (Ø2.4 x L23.6 or Ø1.2 x L31.5))* . . (15)* (%00 x L600 or Ø30 x L800 (Ø2.4 x L23.6 or Ø1.2 x L31.5))* (%00 x L600 or Ø30 x L800 (Ø2.4 x L23.6 or Ø1.2 x L31.5)* . . . (15)* 	40 (1.6)		-		40 (1.6)	-	
5000 . 5000 . . </td <td>0.2</td> <td></td> <td>-</td> <td></td> <td>0.2</td> <td>-</td>	0.2		-		0.2	-	
· {}} {}} {}} · {\$\$60 x L600 or \$\$0 x L800} (\$\$2.4 x L23.6 or \$\$1.2 x L31.5)}* {\$\$60 x L600 or \$\$0 x L800} (\$\$2.4 x L23.6 or \$\$1.2 x L31.5)}* {\$\$60 x L600 or \$\$0 x L800} (\$\$2.4 x L23.6 or \$\$1.2 x L31.5)}* · · {\$\$15}* (\$\$2.4 x L23.6 or \$\$1.2 x L31.5)}* {\$\$15}* {\$15}* {\$15}* {\$15}*	5000		-		5000	-	
Image: Constraint of the	-		{3}*		-	{3}*	
Image: Constraint of the			(0(0 × 1(00 or 0(20 × 1/800			[0]	
· (15)* · (15)* · #5 #5 [15)* · 1562 (61.5) 2500 (98.4) · · 1562 (61.5) 2500 (98.4) · · 1562 (61.5) 2500 (98.4) · · 22 (3.0) · · 99.93 67.61 74.25 94.71 103.93 99.44 2820 (11.0) 2750 (108.3) 2850 (112.2) 2850 (112.2) 2820 (111.0) 2850 (112.2) 4900 (192.9) 4900 (192.9) 6400 (252.0) 4900 (192.9) 4900 (192.9) 6400 (252.0) 3021 (118.9) 3011 (118.5) 3011 (118.5) 3021 (118.9) 3011 (118.5) 18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1)	-	-	(Ø2 4 x 23.6 or Ø1 2 x 31 5)}*		-	(Ø2.4 x 23.6 or Ø1.2 x 31.5)	
Image: Constraint of target (12) <t< td=""><td></td><td>_</td><td>{15*</td><td></td><td>_</td><td>{15*</td></t<>		_	{15*		_	{15*	
· *** *** · · · 1562 (61.5) 2500 (98.4) · · · 1562 (61.5) 2500 (98.4) · · · 22.30) · · · 99.93 67.61 74.25 94.71 103.93 99.44 2820 (11.0) 2750 (108.3) 2850 (112.2) 2850 (112.2) 2820 (111.0) 2850 (112.2) 4900 (192.9) 4900 (192.9) 6400 (252.0) 4900 (192.9) 4900 (192.9) 6400 (252.0) 3021 (118.9) 3011 (118.5) 3011 (118.5) 3011 (118.5) 3021 (118.9) 3011 (118.5) 18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1)	-	#5	(1.) #r		-	11)	
1562 (61.5) 2500 (98.4) - 2.2 (3.0) 99.93 67.61 74.25 94.71 103.93 99.44 2820 (11.0) 2750 (108.3) 2850 (112.2) 2850 (112.2) 2820 (111.0) 2850 (112.2) 4900 (192.9) 4900 (192.9) 66400 (252.0) 4900 (192.9) 4900 (192.9) 66400 (252.0) 3021 (118.9) 3011 (118.5) 3011 (118.5) 3011 (118.5) 3021 (118.9) 3011 (118.5) 18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1)	-	#0	#5		-		
2.2 (3.0) 99.93 67.61 74.25 94.71 103.93 99.44 2820 (11.0) 2750 (108.3) 2850 (112.2) 2850 (112.2) 2820 (111.0) 2850 (112.2) 4900 (192.9) 4900 (192.9) 6400 (252.0) 4900 (192.9) 4900 (192.9) 6400 (252.0) 3021 (118.9) 3011 (118.5) 3011 (118.5) 3011 (118.5) 3021 (118.9) 3011 (118.5) 18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1)	-	1502 (61.5)	2500 (98.4)	0)	-		
99.95 67.01 74.25 94.71 103.93 99.44 2820 (11.0) 2750 (108.3) 2850 (112.2) 2850 (112.2) 2820 (111.0) 2850 (112.2) 4900 (192.9) 4900 (192.9) 6400 (252.0) 4900 (192.9) 4900 (192.9) 6400 (252.0) 3021 (118.9) 3011 (118.5) 3011 (118.5) 3011 (118.5) 3021 (118.9) 3011 (118.5) 18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1)	00.02	17 14	2.2 (0.0)	102.02	00.11	
2820 (111.0) 2750 (108.3) 2850 (112.2) 2850 (112.2) 2820 (111.0) 2850 (112.2) 4900 (192.9) 4900 (192.9) 6400 (252.0) 4900 (192.9) 4900 (192.9) 6400 (252.0) 3021 (118.9) 3011 (118.5) 3011 (118.5) 3011 (118.5) 3021 (118.9) 3011 (118.5) 18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1)	99.93	67.61	/4.25	94./1	103.93	99.44	
4900 (192.9) 4900 (192.9) 6400 (252.0) 4900 (192.9) 4900 (192.9) 6400 (252.0) 3021 (118.9) 3011 (118.5) 3011 (118.5) 3011 (118.5) 3021 (118.9) 3011 (118.5) 18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1)	2820 (111.0)	2750 (108.3)	2850 (112.2)	2850 (112.2)	2820 (111.0)	2850 (112.2)	
3021 (118.9) 3011 (118.5) 3011 (118.5) 3021 (118.9) 3011 (118.5) 18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1) FANUC31i {FANUC31i-5 / SIEMENS 840D*** / CUFOS}*	4900 (192.9)	4900 (192.9)	6400 (252.0)	4900 (192.9)	4900 (192.9)	6400 (252.0)	
18000 (39682.6) 16300 (35934.8) 20100 (44312.3) 16700 (36816.7) 18500 (40784.9) 20500 (45194.1) FANUC31i {FANUC31i-5 / SIEMENS 840D*** / CUFOS}*	3021 (118.9)	3011 (118.5)	3011 (118.5)	3011 (118.5)	3021 (118.9)	3011 (118.5)	
FANUC31i {FANUC31i-5 / SIEMENS 840D*** / CUFOS}*	18000 (39682.6)	16300 (35934.8)	20100 (44312.3)	16700 (36816.7)	18500 (40784.9)	20500 (45194.1)	
			FANUC31i {FANUC31i-5 / SIE	MENS 840D*** / CUFOS}*	•		

*{ }: Optimal *** Except PUMA SMX2600ST/3100ST

** A-axis is travel of servo tail stock in PUMA SXM2600, 3100/L and travel of right spindle in PUMA SMX2600S/ST, 3100S/ST/LS. *** Except PUMA SMX2600ST/3100ST

Basic information

Basic Structure

Main Units

Performance

Machine

CUFOS

Detailed

Options

Diagrams Specifications

Customer Support Service

Information

NC Unit Specification

• Standard O Optional X Not applicable

PUMA

7 (X1, Z1

C2)

5 axes

•

•

•

•

•

0

•

•

0

•

0

0

•

•

•

•

•

•

•

•

•

•

0

0

•

0

•

Х

•

•

•

•

•

•

0

0

0

•

•

PUMA

9 (X1, Z1,

Z2, C2, A) 5 axes

•

•

•

•

•

0

•

•

0

•

0

0

•

•

• •

•

• •

•

•

•

0 0

•

0

•

Х

•

•

•

•

•

•

0

0

0

•

•

SMX 2600S, SMX 2600ST,

3100S/LS 3100ST

Fanuc 31i-5

,C1, B, Y, A, C1, Y, B, X2,

PUMA

SMX 2600,

3100/L

Y, A)

5 axes

Х

•

•

•

•

•

•

0

•

0

0

•

•

•

•

•

•

•

•

•

•

0

0

•

0

•

Х

•

•

•

•

•

•

0

0

0

•

•

9 (X1 ,Z1, C1, Y, B, X2, 6 (X, Z, C, B,

PUMA

•

•

PUMA

•

FANILG					PUMA	PUMA	PUMA
FANUC	No	ltem		Spec	SMX 2600,	SMX 2600S,	SMX 2600ST
31i/31i-5	110.	nem		Spec.	3100/L	3100S/LS Fanu	3100ST ic 31i
	1		Controlled axes		6 (X, Z, C, B, Y, A)	7 (X1, Z1, C1, B, Y, A, C2)	9 (X1 ,Z1, C1, Y, B, X2, Z2, C2, A)
	2	Controlled	Simultaneously controlled axes		4 axes	4 axes	4 axes
	3		Synchronous/Composite control	(C1 & C2 Synchro Control)	X	•	•
	4	axis	Inch/metric conversion		•	•	•
	5		Stored stroke check 1		•	•	•
	6		Unexpected disturbance torque detection function		•	•	•
	7		DNC operation with memory card		•	•	•
	8		Tool retract and recover		0	0	0
	9		Dry run		•	•	•
	10	Operation	Single block		•	•	•
	11	operation	Handle interruption		0	0	0
	12		Incremental feed	x1, x10, x100, x1000	•	•	•
	13		Manual handle retrace	, , ,	0	0	0
	14		Active block cancel		0	0	0
	15		Nano interpolation				
	15		Linear interpolation				
	10			C02	•		
	17	-		002	•	•	•
	18				•	•	•
	19		Cylindrical interpolation		•	•	•
	20		Helical interpolation		•	•	•
	21	Thread cutting, synchronous cutting		•	•	•	
	22	22	Multi threading		•	•	•
	23 Interpola	Interpolation	Thread cutting retract		•	•	•
	24		Continuous threading		•	•	•
	25		Variable lead thread cutting		0	0	0
	26		Circular thread cutting		0	0	0
	27		Polygon machining with two spindles		•	•	•
	28		High-speed skip	Input signal is 8 points.	0	0	0
	29		3rd/4th reference position return		•	•	•
	30		Balanced cutting	Only for more than 2 path control	Х	Х	Х
	31	Feed function	Override cancel		•	•	•
	32		Absolute/incremental programming	Combined use in the same block	•	•	•
	33		Diameter/Radius programming	X-axis	•	•	•
	34		Dynamic switching of diameter/ radius specification		0	0	0
	35		Automatic coordinate system setting		•	•	•
	36	Program	Workpiece coordinate system	G52 - G59	•	•	•
	37	input	Workpiece coordinate system preset		0	0	0
	38		Addition of workpiece coordinate system	48 pairs	0	0	0
	39		Addition of workpiece coordinate system	300 pairs	0	0	0
	40		Direct drawing dimension programming		•	•	•

41

G code system

A

lo. Item			Spec.	PUMA SMX 2600, 3100/L	PUMA SMX 2600S, 3100S/LS	PUMA SMX 2600ST, 3100ST	PUMA SMX 2600, 3100/L	PUMA SMX 2600S, 3100S/LS	PUMA SMX 2600ST 3100ST
					Fani	ic 31i		Fanue	311-5
42		G code system	B/C	•	- Cinc	•			
42		Chamfering/Comer P		•	•	•	•	•	
45		Custom macro		•	•	•	•	•	
44		Addition of custom macro common variables	#100 - #199 #500 - #999	•	•	•		•	•
45		Addition of custom macro	#100 - #199, #300 - #999	•	•				•
40				0	0	0	0	0	0
47	-	Canned cycle		•	•	•	•	•	•
48	Program	Automatic comer override		0	0	0	0	0	0
49	input	3-dimensional coordinate system conversion		•	•	•	•	•	•
50		Macro executor		•	•	•	•	•	•
51		Macro executor + C language executor		Х	Х	•	X	X	•
52		Coordinate system shift		•	•	•	•	•	•
53		Direct input of coordinate system shift		•	•	•	•	•	•
54		Real time custom macro		0	0	0	0	0	0
55		Pattern data input		0	0	0	0	0	0
56	Operation	Easy Operation package		•	•	•	•	•	•
57	Guidance Function	EZ Guidei(Conversational Programming Solution)		•	•	•	•	•	•
58		Constant surface speed control		•	•	•	•	•	•
59	Auxiliary/	Spindle override	0 - 150%	•	•	•	•	•	•
60	Spindle	Spindle orientation		•	•	•	•	•	•
61	speed	Spindle synchronous control		Х	•	•	Х	•	•
62	function	Rigid tap		•	•	•	•	•	•
63		Arbitrary speed threading		0	0	0	0	0	0
64		Tool offset pairs	400-pairs	•	•	•	•	•	•
65		Tool offset pairs	499-pairs	0	0	0	0	0	0
66		Tool offset pairs	999-pairs	0	0	0	0	0	0
67		Tool offset	555 Paris	•	•	•	•	•	•
68		Tool center point control		X	X	X	X	X	X
69	Tool function /	Smooth TCP		X	X	X	•	•	•
70	Tool	V-axis offset		•	•	•	•	•	•
70	compensation	Tool radius /Tool nose radius compensation			•				
71				•	•				
72			C26/C27						
75		Direct input of officet value measured P	356/357		•				
74				•	•	•	•	•	•
75	A	lool life management	the set of the set	•	•	•	•	•	•
76	compensation	Backlash compensation for each rapid traverse and cut		•	•	•	•	-	•
77	function	Stored pitch error compensation		•	•	•	•	•	•
78			1280M(512KB)_1000 programs	•	•	•	•	•	•
79			2560M(1MB)_1000 programs	0	0	0	0	0	0
80			5120M(2MB)_1000 programs	0	0	0	0	0	0
81			10240M(4MB) 1000 programs	0	0	0	0	0	0
82		Part program storage size & Number of registerable	20480M(8MB) 1000 programs	0	0	0	0	0	0
83		programs	2560M(1MB) 2000 programs	0	0	0	0	0	0
84	Editing		5120M(2MB) 4000 programs	0	0	0	0	0	0
85	operation		10240M(4MB) 4000 programs	0	0	0	0	0	0
86			20480M(8MB) 4000 programs	0	0	0	0	0	0
87		Program protect		•	•	•	•	•	•
88		Password function		•	•	•	•	•	•
89		Playback		0	0	0	0	0	0
90		Memory card program edit & operation	Max 63 programs						
01		data conver		•	•	•	0		•
02		External data input		0	0				
22 02	Data input /	Memony card input/output		-	-	-			
رر ۸۵	output	IISP momon/input/output		-	-	-	-		
74 05		USB memory input/OUTput		•	•	•	•	-	•
95 07		Automatic data backup		•	•	•	•	•	•
96	Interface	Embedded Ethernet		•	•	•	•	•	•
97		Fast Ethernet	4.5H select CD	0	0	0	0	0	0
98	Uthers	Display unit	15" COLOR LCD	•	•	•	•		•
99	PMC System	PMC ladder function	64000 steps	Х	Х	•	X	X	•
100		1st level execution cycle of ladder	4ms	•	•	•	•	•	•
101	Robot	Robot interface with PMC I/O module		0	0	0	0	0	0
102	interface	Robot Interface with PROFIBUS-DP		0	0	0	0	0	0

• Standard O Optional X Not applicable

NC Unit Specification

Basic information Basic Structure Main Units Machine Performance CUFOS	SIEMENS S840D
Detailed Information Options Diagrams Specifications	
Customer Support Service	

				S840D (5 axes)		
No.	Item		Spec.	PUMA SMX2600/3100 series (without Lower turret)		
1			Normal type for Multi- tasking machine	X1, Z1, Y1, B1, C1, C3, W1, MG1, MG2, ARM,SH		
2		Controlled axes	S-type for Multi-tasking machine	X1, Z1, Z3, Y1, B1, C1, C2, C3, W1, MG1, MG2, ARM,SH		
3		Additional controlled axes	Max. 31 axes in total(S840Dsl) /Max. 8 axes in total(S828D)	0		
4		Simultaneously controlled axes	Positioning(G00)/Linear interpolation(G01) : 5 axes Circular interpolation(G02, G03) : 2 axes	•		
5		Backlash compensation		•		
6		Leadscrew error compensation		•		
7	Controlled axis	Measuring system error compensation		•		
8		Feedforward control	velocity-dependent	•		
9		Follow up mode		•		
10		Programmable acceleration		•		
11		Emergency stop / overtravel		•		
12		Least command increment	0.001mm (0.0001 inch)	•		
13		Least input increment	0.001mm (0.0001 inch)	•		
14		Maximum commandable value	±99999.999mm (±3937 inch)	•		
15		Machine lock (PRT)		•		
16		Position switching signals/cam controller		•		
17		Absolute encoder		•		
18		Travel to fixed stop with Force Control		•		
19		Reference point return	G75 FP=1	•		
20		2nd reference point return	G75 FP=2	•		
21		3rd / 4th reference return	G75 FP=3, 4	•		
22		Linear interpolation	Max. 4	•		
23		Circular interpolation	G02, G03	•		
24		Inverse time feedrate	G93	•		
25		Helical interpolation		•		
26		Universal interpolator NURBS		•		
27	Interpolation & Feed	Spline interpolation (A, B and C splines)		•		
28	functions	Dwell	G04	•		
29		Separate path feed for corners and chamfers		•		
30		Reposition		•		
31		Acceleration with Jerklimitation		•		
33		Compressor for 5-axis machining		•		
34		Temperature compensation		•		
35		Countings	CP-Basic	•		
36			CP-Expert	•		

• Standard O Optional X Not applicable

• Standard O Optional X Not applicable

				S840D (5 axes)
No.	Item		Spec.	PUMA SMX2600/3100 series (without Lower turret)
37		Spindle override	50 - 120 %	•
38	Chindle function	Automatic gear state selection		•
39	Spinale function	Oriented spindle stop		•
40		Retraction for rigid tapping		•
41		Tool radius compensations in plane		
42		3D Tool radius compensation	incloded in MDynamics 5-axis	0
43		Number of tools/cutting edges in tool list		600/1500
44	Tool function	Tool length compensation		•
45		Operation with tool management		•
46		Monitoring of tool life and workpiece count		•
47		Magazine list		•
48		Number of levels for skip blocks 1		•
49		Number of levels for skip blocks 8		0
50		Program functions	·	
51		Dynamic preprocessing memory FIFO		•
52	Programming &	Program editor		
53	Editing operation	Programming graphics/free contour input (contour calculator)		•
54		Screens for 1/2/3-point contours (contour definition programming)		•
55		Support for parameter input Animated Elements		•
56		ShopTurn/ShopMill Machining step programming		•
57		Technology cycles for drilling/milling		•
58		JOG		
59		Handwheel selection		•
60		Switchover: inch/metric		•
61		Manual measurement of zero/work offset		•
62		Manual measurement of tool offset		•
63		Automatic tool/workpiece measurement		•
64		Reference point approach, automatic/via CNC program		•
65		Automatic		
66		• Execution from USB or CF card interface on operator panel front		•
67		Execution from HMI memory on NCU CF card		•
68		Execution from network drive		0
69		• Execution from Hard disk (PCU50.5)		0
70		Preset		
71		19.0" color display		•
72		Operating software languages		
73	Others function	Alarms and messages		•
74	(Operation, setting & Display, etc)	Remote Control System (RCS) remote diagnostics		1
75		Measuring, Measuring stage 1 Two probes (switching) with/without deletion of distance-to-go		•
76		Measuring stage 2 Axial measurement Measurements from synchronized actions Cvclic measuring 		0
77		Measuring cycles for drilling/milling and turning • Calibrating workpiece probes • Workpiece measurement • Tool measuring		•
78		Contour handwheel		•
79		Integrate screens in SINUMERIK Operate with SINUMERIK Integrate Run MyScreens		•
80		Cross-mode actions (ASLIPs and synchronized actions in all operating modes)		•
81		Collision avoidance (machine working area)	It is valid in only 1CH	•
82		MDynamics 5-axis		•
J2		moynamics 9 axis		-

NC Unit Specification

• Standard O Optional X Not applicable

Basic information		
Basic Structure Main Units Machine Performance CUFOS	CUFUS	
Detailed		
Information		
Options Diagrams Specifications		
Customer Support		
Service		

				PUMA	PUMA	PUMA	PUMA	PUMA	PUMA
No.	Item		Spec.	SMX 2600,	SMX 2600S,	SMX 2600ST, 2100ST	SMX 2600,	SMX 2600S,	SMX 2600ST,
				3100/L	51003/L3	510051	3100/L	51003/L3	310031
					Fanuc 31	0 (14 74		Fanuc	311-5
1		Controlled axes		6 (X, Z, C, B, Y, A)	7 (X1, 21, C1, B, Y, A, C2)	9 (X1 ,21, C1, Y, B, X2, Z2, C2, A)	6 (X, Z, C, B, Y, A)	7 (X1, Z1 ,C1, B, Y, A, C2)	9 (X1, Z1, C1, Y, B, X2, Z2, C2, A)
2		Simultaneously controlled axes		4 axes	4 axes	4 axes	5 axes	5 axes	5 axes
3	Controlled	Synchronous/Composite		Х	•	•	Х	•	•
4	unis	Inch/metric conversion		•	•	•	•	•	•
5		Stored stroke check 1		•	•	•	•	•	•
6		Unexpected disturbance torque detection function		•	•	•	•	•	•
7		DNC operation with memory card		•	•	•	•	•	•
8		Tool retract and recover		0	0	0	0	0	0
9		Dry run		•	•	•	•	•	•
$\frac{10}{11}$	Operation	Single block		•	•	•	•	•	•
$\frac{11}{12}$		Incremental feed	x1 x10 x100	•	•	•	•	•	•
13		Manual handle retrace	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	0	0	0	0	0	0
14		Active block cancel		0	0	0	0	0	0
15		Nano interpolation		•	•	•	•	•	•
16		Linear interpolation		•	•	•	•	•	•
17		Circular interpolation	G02	•	•	•	•	•	•
10 19		Cylindrical interpolation		•	•	•	•	•	•
20		Helical interpolation		•	•	•	•	•	•
21		Thread cutting, synchronous		•	•	•	•	•	•
22		Multi threading		•	•	•	•	•	•
23	Interpolation	Thread cutting retract		•	•	•	•	•	•
24	functions	Continuous threading		•	•	•	•	•	•
25		Variable lead thread cutting		0	0	0	0	0	0
26		Circular thread cutting		0	0	0	0	0	0
27		spindles		•	•	•	•	•	٠
28		High-speed skip	Input signal is 8 points.	0	0	0	0	0	0
29		3rd/4th reference position return		•	•	•	•	•	•
30		Balanced cutting	Only for more than 2 path control	Х	Х	Х	Х	Х	Х
31	Feed function	Override cancel		•	•	•	•	•	•
32		Absolute/incremental	Combined use in the same block	•	•	•	•	•	•
33		Diameter/Radius programming	X-axis	•	•	•	•	•	•
34		Dynamic switching of diameter/ radius specification		0	0	0	•	•	•
35		Automatic coordinate system setting		•	•	•	•	•	•
36		Workpiece coordinate system	G52 - G59	•	•	•	•	•	•
37		Workpiece coordinate system preset		0	0	0	0	0	0
38		Addition of workpiece coordinate system	48 pairs	0	0	0	0	0	0
39		Addition of workpiece coordinate system	300 pairs	0	0	0	0	0	0
40	Program	Direct drawing dimension programming		•	•	•	•	•	•
41	input 1 2 3	G code system	A	•	•	•	•	•	•
42		G code system	B/C	•	•	•	•	•	•
43		Chamfering/Corner R		•	•	•	•	•	•
44		Custom macro		•	•	•	•	•	•
45		Addition of custom macro common variables	#100 - #199, #500 - #999	•	•	•	•	•	•
46		Interruption type custom macro		0	0	0	0	0	0
47		Canned cycle		•	•	•	•	•	•
48		Automatic corner override		0	0	0	0	0	0
49	19	3-dimensional coordinate system conversion		•	•	•	•	•	•

 Standard 	O Optional	X Not applicable

				PUMA	PUMA	PUMA	PUMA	PUMA	PUMA
				SMX 2600	SMX 2600S	SMX 2600ST	SMX 2600	SMX 2600S	SMX 2600ST
No.	Item		Spec.	2100/	21005/15	2100ST	2100/1	21005/15	2100ST
				3100/L	51005/L5	510051	3100/L	51005/L5	510051
					Fanu	c 31i		Fanuo	: 31i-5
50		Macro executor		•	•	X	•	•	X
51	-	Macro executor + Clanguage executor		Y	X	•	Y	X	
52	Program	Coordinate system shift		~	~			~	•
52	input	Coordinate system sint		•	•	•	•	•	•
53		Direct input of coordinate system shift		•	•	•	•	•	•
54		Real time custom macro		0	0	0	0	0	0
55	Operation	Pattern data input		0	0	0	0	0	0
E 6	Guidance	Easy Operation package		•	•	•	•	•	•
00	Function	Easy Operation package		•	•	-	•	•	-
57		Constant surface speed control		•	•	•	•	•	•
58	Auxiliary/	Spindle override	0 - 150%	•	•	•	•	•	•
59	Spindle	Spindle orientation		•	•	•	•	•	•
60	speed	Spindle synchronous control		Y		•	Y		•
60 61	function	Pigid tan		~					
61	lunction	Rigiu tap		•	•	•	•	•	•
62		Arbitrary speed threading	(00	0	0	0	0	0	0
63	-	lool offset pairs	400-pairs	•	•	X	•	•	X
64		Tool offset pairs	499-pairs	0	0	•	0	0	•
65		Tool offset pairs	999-pairs	0	0	0	0	0	0
66		Tool offset		•	•	•	•	•	•
67	1	Tool center point control		Х	Х	Х	Х	Х	X
68	Iool function /	Smooth TCP		Х	Х	X	•	•	•
69	lool	Y-axis offset		•	•	•	•	•	•
70	compensation	Tool radius /Tool nose radius componention			•	-	•	•	-
71		Tool geometry/wear compensation			-		-	-	
/ 1	-			-	-	-	-	-	-
/2		Automatic tool offset		•	•	•	•	•	•
73		Direct input of offset value measured B		•	•	•	•	•	•
74		Tool life management		•	•	•	•	•	•
75	Accuracy	Backlash compensation for each rapid traverse and							
/ 5	compensation	cutting feed		•	•	•	•	•	-
76	function	Stored pitch error compensation		•	•	•	•	•	•
77			1280M(512KB) 1000 programs	•	•	•	•	•	•
78			2560M(1MB) 1000 programs	0	0	0	0	0	0
70			5120M(2MB) 1000 programs	0	0	0	0	0	0
19	-		10240M(4MP) 1000 programs	0	0		0	0	0
80	-	Part program storage size &	10240M(4MB)_1000 programs	0	0	0	0	0	0
81	-	Number of registerable programs	20480M(8MB)_1000 programs	0	0	0	0	0	0
82	Editing		2560M(1MB)_2000 programs	0	0	0	0	0	0
83	operation		5120M(2MB)_4000 programs	0	0	0	0	0	0
84	operation		10240M(4MB)_4000 programs	0	0	0	0	0	0
85	1		20480M(8MB)_4000 programs	0	0	0	0	0	0
86		Program protect		•	•	•	•	•	•
87		Password function		•	•	•	•	•	•
88		Playback		0	0	0	0	0	0
00	-	Momony card program edit & operation	Max 62 programs		•	•	•	•	
09		dete server	Max 05 programs	•	•	-	•	•	•
90	-			0	0	0	0	0	0
91	Data input /	External data input		•	•	•	•	•	•
92	output	Memory card input/output		•	•	•	•	•	•
93		USB memory input/output		•	•	•	•	•	•
94		Automatic data backup		•	•	•	•	•	•
95	Interface	Embedded Ethernet		•	•	•	•	•	•
96	function	Fast Ethernet		0	0	0	0	0	0
97	Robot	Robot interface with PMC I/O module		0	0	0	0	0	0
98	interface	Robot interface with PROFIBUS-DP		0	0	0	0	0	0
<u>00</u>	incentuce	Display Unit	19" Color I CD Screen 2 Point touch	•	•	•	•	•	•
ノブ 100	-	Main DAM Momony	4GP	-	-		-	-	
100	4			-	-	-	-	-	-
101			33U 32UB	-	-	-	-	-	-
102		Storage Memory	SSD 64GB	0	0	0	0	0	0
103			SSD 128GB	0	0	0	0	0	0
104		Doosan Tool Management for SMX		0	0	0	0	0	0
			When this item is selected,						
105		Callinan Bratastian Custom	The size of RAM and SSD are				2		
105		Collison Protection System	automatically expanded to 8GB	0	0	0	0	0	0
			and 64GB, respectively.						
106			5GB	•	•	•	•	•	•
107	1	SSD Data server Application	20GB	0	0	0	0	0	0
108	CUEOS		40GB	0	0	0	0	0	0
100	0105	Manager's Message Notification application		•	-		•	-	
110	-	ETD Somer convice		-	-		-	-	
110				•	-	-	•	-	-
111		Smart key access control application		0	0	0	0	0	0
112		Memo Application		•	•	•	•	•	•
113		Machine status Monitor application		•	•	•	•	•	•
114]	Alarm guidance application		•	•	•	•	•	•
115		Manual viewer Application		•	•	•	•	•	•
116		Calendar Application		•	•	•	•	•	•
117	1	Browser Application		•	•	•	•	•	•
118	1	Maintenace Manager Application		•	•	•	•	•	•
110		Data Logger Application		-	-	-	-	-	-
120		Sano viewer Application			-		-	-	
120		Serve viewer Application			-		•	-	

Basic information Basic Structure

Main Units Machine Performance CUFOS

Detailed Information

Options Diagrams Specifications

Customer Support Service

Responding to Customers Anytime, Anywhere

Technical Center: Sales Support, Service Support, Parts Support

Doosan Machine Tools' Global Network, Responding to Customer's Needs nearby, Anytime, Anywhere

Doosan machine tools provides a system-based professional support service before and after the machine tool sale by responding quickly and efficiently to customers' demands. By supplying spare parts, product training, field service and technical support, we can provide top class support to our customers around the world.

Customer Support Service

We help customers to achieve success by providing a variety of professional services from presales consultancy to post-sales support.

Supplying Parts

- Supplying a wide range of original Doosan spare parts

- Parts repair service

Field Services

- On site service
- Machine installation and testing
- Scheduled preventive maintenance
- Machine repair

Technical Support

- Supports machining methods and technology
- Responds to technical queries
- Provides technical consultancy

Training

- Programming / machine setup and operation
- Electrical and mechanical maintenance
- Applications engineering

PUMA SMX series	Description	Unit	PUMA PUMA SMX2600 SMX3100/L		PUMA SMX 2600S/ ST	PUMA SMX3100S/ LS/ST	
	Chuck (Left spindle)	inch	10 {12}*	12 {15}*	10 {12}*	12 {15}*	
	Chuck (Right spindle)	inch			10 {12}*		
	Max. turning diameter	mm (inch)	660 (26.0)				
	Max. turning length	mm (inch)	1540 (60.6) [SMX3100L/LS : 2540(100)]				
	Spindle speed	r/min	4000	3000	Left / Right : 4000	Left : 3000 Right : 4000	
- 4	Motor power	kW (Hp)	26/22 (34.9/29.5)	30/25 (40.2/33.5)	26/22 (34.9/29.5)	30/25 (40.2/33.5)	

*{ } Option

Doosan Machine Tools

www.doosanmachinetools.com

f 🛗 🖸 in

Head Office

22F T Tower, 30, Sowol-ro 2-gil, Jung-gu, Seoul, Korea, 04637 Tel +82-2-6972-0370 / 0350 Fax +82-2-6972-0400

Doosan Machine Tools America 19A Chapin Rd., Pine Brook, NJ 07058, U.S.A. Tel +1-973-618-2500 Fax +1-973-618-2501

Doosan Machine Tools Europe

Emdener Strasse 24, D-41540 Dormagen, Germany Tel +49-2133-5067-100

Fax +49-2133-5067-111 Doosan Machine Tools India No.82, Jakkuar Village, Yelahanka Hobil,

Bangalore-560064 Tel + 91-80-2205-6900 E-mail india@doosanmt.com

Doosan Machine Tools China

Room 101,201,301, Building 39 Xinzhuan Highway No.258 Songjiang District,China Shanghai(201612) Tel +86 21-5445-1155 Fax +86 21-6405-1472

 \ast For more details, please contact Doosan Machine Tools.

* The specifications and information above-mentioned may be changed without prior notice.

* Doosan Machine Tools Co., Ltd. is a subsidiary of MBK Partners. The trademark **DOOSAN** is used under a licensing agreement with Doosan Corporation, the registered trademark holder.

There is a high risk or fire when using non-water-soluble cutting fluids, processing flammable materials, neglecting use coolants and modifying the machine without the consent of the manufacturer. Please check the SAFETY GUIDANCE carefully before using the machine.